
A Case Study in Efficient Microcontroller Education
Bettina Weiss, Günther Gridling, Markus Proske

Vienna University of Technology,
Embedded Computing Systems Group E182-2,

Treitlstr. 3/2, 1040 Vienna, Austria
Email:

�
bw,gg,proske � @ecs.tuwien.ac.at

Abstract— Undergraduate education typically is characterized
by a large number of students. Therefore, courses must be
conducted efficiently and should not only focus on conveying the
course material, but must also be oriented towards a maximum
transfer of knowledge with a minimum amount of invested time
on the instructor’s part. At the same time, courses should be
flexible to accommodate different student needs.

In this paper1, we identify the needs of a practical course in
microcontroller programming with respect to course structure
and grading, present our solutions, and discuss our experiences.

Index Terms—embedded systems education, automatic grading,
distance learning, pedagogy

I. INTRODUCTION

Embedded systems education is a vital part of the computer
engineering curriculum and has gained increasing importance
in the last decade [1], [2]. However, it also suffers from
problems that are specific to any hands-on course using
hardware: To teach the practical skills involved, students must
be assigned an appropriate workload, but lab resources are
limited. Add to that the increasing demand for embedded sys-
tems engineers, which entails an increase in student numbers,
and embedded systems education soon reaches its limits with
respect to both lab resources and available personnel. It thus
makes sense to invest a significant amount of time into the
setup of a course, if the course can then be managed with less
strain on the university’s resources.

The recently introduced bachelor study “Computer Engi-
neering” at the Vienna University of Technology contains
several courses which focus on programming embedded sys-
tems, among them the introductory course Microcontroller
[3]. The Microcontroller course gives second-year computer
engineering students their first experiences with microcon-
trollers and hardware-near programming. We expect students
to be proficient in C programming and to have basic computer
architecture and electrical engineering knowledge. The course
is intentionally kept low-level, much like [4], and teaches stu-
dents both the basics of microcontroller programming (without
debugging tools) in Assembler and C and how to control
external hardware. For most students, it is their first contact

1This work is part of the SCDL “Seamless Campus: Distance Labs” project,
which received support from the Austrian “FIT-IT Embedded Systems”
initiative, funded by the Austrian Ministry for Traffic, Innovation and Tech-
nology (BMVIT) and managed by the Austrian Research Promotion Agency
(FFG) under grant 808210. See http://www.ecs.tuwien.ac.at/Projects/SCDL/
for further information.

with microcontrollers, with hardware, and with Assembler
programming.

When setting up this course, we faced the challenge of many
(about 150) students in an 8 workstation lab. We also wanted to
make the course more accessible to employed and handicapped
students, potentially scalable to a large number of students, and
suitable for distance learning, which further added to the chal-
lenge. This made it very demanding to balance the needs of the
students, the demands of the curriculum, and the constraints
of available resources. We are teaching the microcontroller
course since 2003 and in each year experimented with different
mechanisms to attain our goals. This year’s course had good
student feedback and was conducted very efficiently from our
point of view. So we can conclude that it is possible to find
a satisfactory solution to this optimization problem, and we
believe that our experiences, both positive and negative, gained
from setting up this course can be of value to other instructors.

In the following sections, we will first identify the require-
ments on practical courses in Section II. In Section III we will
present the course structure of the Microcontroller course and
explain why we structured the course in this way. Section IV
is dedicated to our grading scheme, which is essential to
achieving our goals. In Section V, we give a discussion of our
current course, its advantages and disadvantages, and student
feedback. Section VI concludes the paper.

II. COURSE GOALS

When reviewing our expectations for the course, we identi-
fied three different and possibly conflicting areas of concern:

Financial Impact:
The course should be conducted efficiently, with a
minimum amount of time and resource efforts. It
should be scalable to a large number of students
and should be suitable for distance learning. Since
the time of a professor is most expensive, whereas
tutors are comparatively cheap, the bulk of student
supervision should fall to tutors.

Educational Impact:
The course should be successful, that is, it should
have high student retention, a high passing rate, and
convey both microcontroller programming skills and
understanding of the issues involved.

Motivational Impact:
The course should motivate students and should re-

40

sult in high student satisfaction. Students should get
interested enough to start their own private projects.

Naturally, these goals require different techniques, which in
turn may have a positive or negative influence on the other
objectives. For example, in our first try, we allowed students
free access to the labs, gave them an exercise set that was
completely voluntary, told them that we were available for
questions by email or newsgroup at any time, and conducted
one programming exam at the end of the term. So basically,
we told them to exercise as much as they thought they needed
and then come to the exam. This scored well on the financial
axis, moderately well on the motivational axis, and pretty low
on the educational axis, since most students put off doing the
exercises until it was too late and then dropped the course.
Even those that passed lacked some basic knowledge. This
taught us that for each of our objectives, we must identify the
techniques most beneficial to it, but at the same time must
also account for their effects on the other areas. As a result,
we went through the different pedagogical measures available
to us and estimated their impact, see Table I. In the table, a �

represents a positive impact, � a negative one, and values in
brackets are setup costs that only occur once. The total column
states the overall impact.

Due to limited space, we cannot discuss our reasoning
behind the values, but bear in mind that the table represents
our personal assessment and values, so other instructors may
come to slightly different evaluations.

TABLE I

DIFFERENT TEACHING TECHNIQUES AND THEIR IMPACT IN DIFFERENT

AREAS

Fin. Edu. Mot. Total
autogradable exams � � � � � 1
essay exams � � � � � � 0
just 1 exam � � � � � -1
several exams � � � � 2
drop result � � � � 2
flexible grading � � � � � 3
voluntary homework � � � � � � 0
ungraded homework � � � � � � � 1
graded homework � � � � � � � 1
flexible workload � � � 1
extra work counts � � � � 2
open labs � � � � � � 4
closed labs � � � � � � 0
supervision � � � � � -1
no supervision � � � � � � � � -2
group work � � � � 0
lectures � � � � � � 2
electronic lectures � � � �
 � � � 3
no lectures � � � � � � 0
script [� �] � � 2
suppl. material [� �] � � � 3

With this table in mind, we then did a complete redesign
of our course, employing the mechanisms indicated by bold
numbers in the total column of the table, and had far better suc-
cess with it while still keeping the workload of the professor
acceptably low. We can thus conclude that it is possible to get
good educational and motivational results with only moderate
concessions on the financial part.

III. MICROCONTROLLER COURSE

This year’s course got very good student ratings. The struc-
ture we describe here already incorporates our experiences
gained this year and will be first employed in the summer
term of 2006. Since the changes intended for 2006 are minor
and to a large extent supported by student and tutor feedback,
we expect the course to have a similar (if not better) impact
on students as this year’s course.

A. Educational Material

Since students should be able to work at home, we needed to
get the lab to the students. Although it would have been more
cost effective to use simulators like in [5], simulators cannot
capture all the problems that arise when using real hardware
[6]. Furthermore, working with real hardware instills into
students the confidence that they know how to handle hard-
ware, and often encourages them to start their own projects.
Therefore, we decided to use real hardware in the course,
which had to be cheap to be suitable for “mass” production.
Unfortunately, we did not find any suitable existing hardware
and hence proceeded to develop our own lab hardware.

One important lesson we learned about student hardware is
that it is vital to let students connect the hardware themselves.
In our first course, we used a commercial HCS12 evaluation
board with fixed connections, and we ended up with a lot of
students who simply did not understand how a LED and a
microcontroller pin go together. They had just learned that
“writing 0x0F to port X turns on LED0-3”. So our own
hardware has no fixed connections, students must do all the
wiring.

Fig. 1. Basic microcontroller hardware

We decided to use an Atmel microcontroller because they
are common and fairly inexpensive, and because their RISC
architecture is easy to understand and to program. In order

41

to be more flexible, we designed several separate boards: The
microcontroller board only contains the microcontroller, an
ATmega16, and its supportive logic (power jack and regulator,
oscillator, reset button, programming connector) and single
connectors to its I/O pins instead of a fixed connector like
for example in [7]. As a side benefit, the microcontroller can
be exchanged freely, and we are in fact working on several
additional controller boards (HCS12, ARM, MSP430) to allow
good students to broaden their knowledge by switching to a
different controller during the course. The simple I/O board
contains 8 LEDs, 8 buttons, 8 switches, a 6-digit numeric
display, a 4 � 4 matrix keypad, 2 potentiometers, and a light
sensor. Most of the exercises can be done with the controller
board and the simple I/O board. For communication to the
PC, we also offer an RS-232 board which contains a serial
interface. All three boards are mounted on a wooden plate, see
Figure 1, and can be connected via normal wires. For more
challenging projects, we offer additional boards like a motor
board with dc and stepper motors, see Figure 2, an interface
board with serial, parallel, and CAN interfaces, or a chip-card
reader.

Fig. 2. Motor board with dc and stepper motors

The lab kit allows our students to work in their own
time according to their own schedules. They only have to
synchronize with us for homework submissions and the exams.
Student feedback for the kit is very positive, and we feel that
the lab kit especially helps slower students to catch up and
acquire the necessary programming skills. Students could also
keep the lab kits if they desired, and this offer was taken by
over 70% of the students, showing us that (a) many students
got interested into the topic during the course, and (b) the lab
kit is useful to them beyond the course.

This year is the first in which we offered take-home lab
kits for a deposit of about 70 Euro. The kit consists of the
microcontroller, simple I/O and RS-232 boards, wires, cables,

Fig. 3. Contents of the lab kit

a power supply, and a Knoppix CD with our lab environment,
see Figure 3.

Apart from the hardware, we also offer some instructional
material. Although most of the course is lab work, there are
some accompanying lectures that give students an introduction
into the microcontroller and the hardware. To allow distance
learning and to remove the lecture load from the instructor,
lectures are not held in class, but will in the future be
provided electronically as slides and/or video with audio track.
A lecture script complements the electronic lectures. Finally,
manuals for the hardware are available, and we provide sample
programs to get students started.

B. Course Structure

Basically, our course employs a mixture of exams, light
compulsory workload and flexible voluntary workload that
allows different work styles while still yielding comparable
grades.

The course is divided into three parts. The first part is in-
tended as an introduction into the programming environment,
the microcontroller architecture, the hardware, and assembly
language. The second part is dedicated to learning how to
program the basic features of the microcontroller like timers
and the analog module, how to handle interrupts, and how to
program typical hardware like matrix keypads and numeric
displays. The third part is concerned with interfaces, mo-
tor control, and application programming. Both second and
third part are in C. To ensure that the students learn the
most important concepts, they have to do a couple (3-4) of
compulsory exercises in each part. These exercises cover the
microcontroller’s features in simple tasks designed to convey
basic knowledge about how the feature works and how it
is programmed. We decided to focus on simple tasks here
because in our experience complex tasks cause students to
concentrate on getting the program to work instead of on
getting it right. To deepen their knowledge, students may select
additional voluntary exercises from a significantly larger (20-
30) exercise pool. Some of these exercises cover special details

42

of the microcontroller or the hardware in depth, others are
applications. Depending on the quality of the work and the
complexity of the exercise, students get a certain amount of
“bonus” points per completed exercise, which are added to
their course result.

Since there cannot be any guarantee that students do their
homework all alone, each part is concluded by a programming
exam (consisting of two exam tasks) and a theory exam.
Attendance at all exams is not compulsory, but students must
fulfill some minimum requirements concerning their exam
results for a passing grade. If students come to all three exams
of a type, their worst result on these exams will be dropped.

C. Lab Organization

Although closed labs seem to be more effective [8], they
are hard on resources and not flexible w.r.t. working hours.
Even though we concur with [8] that having a closed lab in
the initial phases of the course would probably be a good
thing, we cannot do this due to resource problems, except
if we make students work in groups. However, after two
years of experience with group work in a closed lab setting
(3 persons/group), we cannot affirm the results of [9] that
students learn more in group work. We suspect that the effect
of group work depends on the tasks posed to the students:
Large and difficult tasks that cannot be done by one member
alone make for good teamwork and allow students to learn
more in the team; simple tasks, however, are more conducive
to one student doing the work and the others just watching.
The student doing the work possibly benefits, but the onlookers
will lack essential practical programming and debugging skills
at the exam. Since we focus on simple tasks that capture
the essentials, we observed that group work is detrimental
to overall student performance and also brings the danger of
students over-assessing their skills – after all, they put in a lot
of hours watching and feel that it should suffice if they know
how to do it in theory. For many students, the exams are real
eye-openers in this regard.

So closed labs and group work are out. On the other hand,
we also have experience with an open lab and voluntary
individual work, which resulted in students putting off the
work as long as possible and then getting into trouble with the
exams due to lack of practice. Also, retention in this course
was terrible, only about 30% of the students remained until the
end of the course, because most failed to acquire the necessary
skills in time. Furthermore, the lack in supervision resulted
in exercise solutions that appeared to work, but were pretty
convoluted and sometimes even wrong. Yet, students thought
that their solutions were right and without feedback had no
way of knowing otherwise. So just doing open labs was not a
viable option either.

To get the best of both worlds, we decided on a mixture of
open and closed labs: Students are expected to work at home,
but each student is assigned to a supervised lab hour once a
week. Attendance is not compulsory, but highly recommended.
The lab supervisor (tutor), a senior student, is assigned 5
students per hour, and is there to answer their questions,

help with debugging problems, check whether students are
on schedule with their homework, and generally lend an ear
in case of problems and keep up the students’ motivations.
We found that the tutors have a tremendous influence on the
motivation and performance of the students and are in fact
the pivotal factor in determining the motivational impact of a
course.

Since the lab hour is not for doing work, but for discussing
problems and asking questions, it could easily be conducted in
a distance learning setting via Webcam. The important thing
here is that the student is encouraged to regularly report about
his or her progress, and that the tutor keeps track about each
student’s progress and motivation and can react to problems
at an early stage.

D. Personnel

In order to minimize personnel costs and to provide scal-
ability, the course uses a hierarchical system for student
supervision: The course is managed by one assistant professor,
one teaching assistant, and

� � � � 	 �
tutors, where

�
is the

number of students in the course2.
Tutors work for three hours a week and meet with 5 students

per hour. In this time, they talk with their students about their
progress, check their work, answer questions, and determine
how well the students have mastered the material so far.
They should also do a preliminary grading of their students’
homework (check whether the programs work and whether
the protocols are in order). The work is very challenging for
the tutors, so this job requires highly motivated students. It
is important to be on the look-out for such students during
the term, and to actively interest them in a tutor job for the
following year.

The teaching assistant, who works for 18 hours per week, is
responsible for the lab equipment, for organizing the exams,
and for the final grading of the homework (after checking for
plagiarisms). The TA is also the first address for tutors with
questions or problems.

The assistant professor is responsible for the course contents
and organization, for the course materials, for the exam
contents, and for exam grading. Since we use electronic
lectures which only have to be done once, after course setup
is complete the course poses only a minimal load on the
professor.

IV. GRADING

For grading, we must ensure that diligent students can use
homework to balance bad or missing exam results, while at
the same time not allowing dishonest students to pass with
somebody else’s work. To this aim, we do both theory and
programming exams, and we require that all students should
get at least two out of the six programming exam tasks right.
Students who fail to meet this requirement do not get a passing
grade, no matter how many points they attain. This ensures that
students who pass the course have some basic microcontroller

2This maximum allowable number of tutors is prescribed by the computer
science faculty of the TU Vienna.

43

programming skills. For an excellent grade, students must also
show that they have a grasp of the theory, so attaining at least
one third of the theory points is a prerequisite for an excellent
grade.

A. Programming Exams

Our programming exams consist of two tasks each. Students
get two hours time, starting with a half hour design phase
without computer, followed by the programming (and testing)
phase on the actual lab hardware. To attain points for an exam
task, students have to write a correct program. Since no partial
credit is given, the tasks are very easy and generally consist
of at most 20 lines of code. Students are provided with a
framework, consisting of an Assembler or C skeleton program,
possibly header files, additional object files, and a Makefile,
and just have to add their code to the skeleton to complete
the task. This allows us to place our exam tasks within more
complex settings while still giving simple student tasks. For
example, an exam task could be:

Task: Create a program which acts as a frequency
measurement routine. Configure the Input Capture
Function of Timer/Counter 1 to determine the fre-
quency produced on pin PD7.

The frequency is in a range between 10 Hz and 99
Hz, so use prescaler 256. Display the ten’s place of
the measured frequency value on the display, using
the provided function display result().

Here, the students just have to set up the input capture
feature of a particular timer and compute the frequency. All
other functionality, like displaying a number or generating the
input function that should be measured, is provided by the
framework.

Tutors are available during the exams to help students with
hardware trouble. Since hardware-near programming is prone
to simple but hard-to-find bugs, the tutors are also allowed
to help with debugging problems, but only if the student can
demonstrate that he or she understands the material and just
suffers from a blackout.

Right now, the correctness of the student programs is
checked manually by the tutors. To help the tutors assess
whether the register initializations of the timer and other
components are correct, we add some functionality to the
provided framework to regularly check the register configura-
tions and put the results on the LEDs. Thus, the tutor can see
at a glance whether the register initializations are correct, or
whether there are missing and/or superfluous bits. In addition,
we are currently working on an automatic external test system
which can provide the microcontroller with specific test stimuli
and verify its responses. Since the software check outputs its
results on the LEDs, these results can easily be taken over by
the external test system, which can thus perform a completely
automatic correctness check. We expect to have this system
working by next summer.

Doing the practical exams on a computer with the actual
hardware has both advantages and drawbacks. On the posi-

tive side, students can try out their programs and have the
opportunity to debug them. This in turn allows us to use an
all-or-nothing grading, which definitely would not be accepted
by students were this just a paper exam. As another benefit, the
exam results are instantly available, no later grading session is
necessary. On the negative side, since students generally pass
on their exam tasks to the colleagues that come after them, one
either requires a lot of PCs or a lot of different exam groups.
Since coming up with good yet simple exam tasks is quite
hard, the first is preferable if the computers and hardware are
available.

To allow a distance learning setting, we need to give
students, who are sitting the exam at some external location,
remote access to the automatic test system. We should also
provide them with remote tutor help via Webcam. We are
currently working on this problem in the SCDL project. Note
that as soon as the exam can be conducted remotely, a large
number of students can sit the exam concurrently. The persons
supervising them do not have to be trained, only the tutors at
the university giving the debugging help do.

B. Theory Exams

For our theory exams, we decided to use exams with yes/no
questions instead of the traditional essay exams. Our decision
was led by our desire for a fair grading scheme and by the
fact that such exams can be graded automatically. Hence, we
conduct our theory exams on computers, and the evaluation
is done automatically as well. Originally, our exam questions
were classical multiple choice questions in the form of a root
(question) and several stems (answers) [10], but we gradually
shifted away from this exam type and now use topics with
several independent yes/no questions each. First of all, it
broadens the range of material that can be covered with the
exam (not every topic can be covered by a question with
multiple plausible answers). As a nice side effect, we found
that students like this kind of exam better as well.

Correcting the exams is done automatically. A correct
answer is worth �

�
points, a wrong answer gets �

�
, and no

answer get � points. In consequence, if the maximum number
of attainable points is � , then a student can get between � �

and � � points on the exam. A negative exam result is set
to zero. Guessing is neither punished nor rewarded by our
system: On the average, a student will neither gain nor lose
with guessing. However, we strongly discourage students from
guessing. At this time, we do not feel the need to actively
punish guessing by making the penalty for a wrong answer
any larger, but we could of course do so. However, since this
also punishes students who did not guess but simply got the
answer wrong, we decided to refrain from using this means
to curb guessing as long as we get the impression that (most)
students try not to guess anyway.

To improve the quality of our exams and to increase
the students’ trust in our questions, we conduct a statistical
evaluation of the exam papers prior to grading the exams, and
we make students aware that we do this. For each question,

44

our statistic calculates the percentage of students who got
the answer right, the percentage who got it wrong, and the
percentage who abstained from answering. Questions with a
high percentage of wrong answers or abstentions are carefully
examined for their appropriateness, and are removed from
the exam if we belatedly find them controversial. With this
method, we have caught a fair share of ambiguous questions
which slipped by our initial scrutiny but were identified by the
number of students who had trouble with it. As a side benefit,
this method also points out errors in the question database. We
highly recommend this procedure for anyone who wants to do
automatically evaluated exams. It does not cost much time,
but makes the exams fairer and increases student satisfaction.

The theory exams can be graded very efficiently. Even with
the additional effort of the statistic, we grade all exams (about
100) in a couple of minutes, and would have no problems at
all to grade 1000+ exams either. A general advantage of our
electronic exams is that they can be conducted anywhere where
a computer and network are available. So it is no problem if
such an exam is conducted at another university, or even at
a high-school, as long as a trusted person is supervising the
exam. As a drawback, one needs either many computers or a
lot of different exam questions.

C. Homework

In addition to exams, students do some exercises from
a larger set as homework. In order to get credit for their
work, they have to submit a working program and a protocol
describing their work and answering some questions about the
subject.

The homework is the only part of the grading that does
not scale well and is easily exploitable by dishonest students.
However, it greatly increases the flexibility of the grading
system, is beneficial to the student’s development of practi-
cal skills, and thus vastly improves student motivation and
satisfaction. Therefore, we include graded homework despite
all its problems.

To lessen our workload, we need homework that can be
corrected mostly by tutors. Here, the microcontroller course
benefits from its low-level approach: The exercises generally
are not complicated. Thus, a well-trained tutor can check
whether a program works, and can also give pointers if the
solution is not programmed well. The same goes for the
protocol: The tutor can check whether the answers to the
questions are correct, and whether the protocol is well-written.
This takes the bulk of the load off the instructors, who only
have to verify the first assessment of the tutors to assign the
grade.

For example, a simple homework task would be to explore
the effects of a floating pin:

Task: Connect SW1 to pin PA4, set PA4 to input
and do not activate the pull-up. In the main loop,
display register bit PINA4 on LED0 and bit PORTA4
on LED1.

Questions: Turn SW1 to OFF. Wave your hand
closely over the board, tap or wiggle the wire
connecting SW1 to the controller. What do you see
on the LEDs? Why?
Set SW1 to position ON. Repeat the actions of the
previous question. What do you see on the LEDs
now?

This exercise demonstrates the effects of a floating pin
(when switch SW1 is turned OFF, the line floats; when it is
ON, the line is grounded). Students observe the volatile nature
of the power levels on the wire when they wave their hand over
it or when they touch it, and are encouraged to speculate on the
technical reasons for the observed effects. The exercise helps
them identify floating problems, which occur quite frequently,
in future programs.

Our most complex exercise task is to measure and plot the
speed curve (acceleration and deceleration phases) of a dc
motor for different PWM ratios. The students have to program
the microcontroller to gather the data, send it over the serial
interface to the PC, and create a 3D-plot with gnuplot. In their
protocol, they have to interpret the resulting plot. This exercise
forces students to put thought into program design, induces
them to reuse previously written code, and thus gives the
students a taste of complex application program development.

The major problem of homework is plagiarism. This can
either take the form of copying (student A copies the work of
student B, possibly slightly modified), or substitution (student
A writes the homework for student B). Unfortunately, there is
no sure-fire means to verify whether a student has done the
work by himself. Even oral exams may not do the trick, since
the student could have been tutored by the author of the code.
Plagiarism detection mechanisms [11] can be used, but they
too cannot identify cases of substitution. Therefore, our main
means to catch such students is our requirement that students
complete two exam tasks for a positive grade. This makes sure
that students passing the course can write simple programs by
themselves. A similar approach has been taken for example
by [12]. Of course, this does not catch students who know
how to program and are just too lazy to do the work by
themselves. Therefore, we additionally check for similarities
in the program codes and the protocols. Right now, we do
this manually, which is extremely time-consuming. We thus
strongly recommend to use an automatic tool for this purpose,
and we are currently looking for suitable tools.

With our lab kits, homework is naturally suited for distance
learning settings, since students can work anywhere. Electronic
submission should not be a problem either, but in this case
we should also provide some means for automated program
verification, both to relieve the tutors from the load of having
to check the correctness of all student programs and to allow
the students to check the correctness of their programs prior
to submission. To allow students to get feedback from their
tutors on their submitted work, tutors should be available via
Webcam to discuss the program and the protocol. So students

45

can submit their work anytime and can get feedback from their
tutor in his or her next (virtual) lab hour.

V. DISCUSSION

This year’s course was on the whole well received by
our students. Student favorites, in descending order, were the
quality and friendliness of our tutors, the take-home lab kits,
the interesting and diverse hardware, the possibility to get
bonus points for additional work, the large exercise set with
its varied exercises (and its availability from the start of the
course), and the flexible grading system.

Students criticized the fact that we do programming exams,
their all-or-nothing nature, and that we demand two completed
programming exam tasks for a positive grade.

Suggestions for improving future courses included addi-
tional and more complex hardware, and to be able to take
home all the hardware (the motor boards were only available
in the lab this year).

We do of course try to improve criticized areas, but cannot
do much about our programming exams. Neither do we really
want to change our procedures. After all, our exam tasks
are kept fairly simple to ensure that prepared students have
sufficient time, and the tutors are allowed to help to prevent
students from failing just because of a simple bug they were
too nervous to find. Our impression is that the students take
the exams too lightly and do not appreciate the fact that just
getting a homework exercise to run with the help of the tutor
and a lot of trial-and-error does not make them proficient
microcontroller programmers. An unfortunate aspect of our
on-target programming exams is that students are generally
convinced that they were “just five more minutes” away from
a correct solution, which makes them feel the lack of partial
credit all the more3. We believe that we can overcome this
problem with better exam preparation, and thus in the future
will ask our tutors to assess the students’ current level of
knowledge regularly.

Since the homework is beneficial to students, we allow it
even though plagiarism may occur. Of course, we try to iden-
tify plagiarism, and in future courses will emphasize more why
plagiarism is detrimental to performance. A study conducted
on patterns of plagiarism [13] indicates that plagiarism is
mostly done by weaker students, possibly because of problems
with handling the work. We hope that regular supervision and
support by the tutor can help weaker students overcome their
problems without resorting to plagiarism.

To improve our motivational impact without too much
financial backlash, we strove to shift as much supervision load
as possible to tutors. It turns out that tutors can handle the
bulk of the student supervision, as long as they in turn are
well supported. Here, we still lack a few tools that would help

3It is interesting to note that in the cases where we followed up such claims,
it always turned out that the student solution had one or more serious errors
and was far from being complete.

tutors a great deal, foremost a tool to manage the student data
(student name, progress, homework submissions, submitted
voluntary work, . . .). We are currently working on such a tool
in our SCDL project and expect it to be ready by next year.
The tool should also be able to handle electronic submissions
and check for plagiarism.

It is also important to prepare tutors properly for their work.
They must of course be trained on the exercise material, but
they must also be made aware of their social duties. For
instance, they must understand why they should monitor the
performance of their students and play an active role in their
development. We must also call to their attention the problems
of plagiarism and their obligation to try and prevent such
things among their students. This is of particular importance
because tutors, as senior students, are liable to have “helped”
their own friends one time or another, and are thus vulnerable
to turning a blind eye when encountering such activities among
their own students. So care must be taken to explain to tutors
why plagiarism hurts the person that plagiarizes.

We never really addressed these issues in former years, but
always chose tutors that we believed were liable to have a good
impact on students. By actively making tutors aware of their
social role and explaining their impact on student motivation
and grades, we hope to improve tutor motivation even more.

Since student satisfaction with our course is very good,
student retention is quite high (70%). Of the students who
remained in the course, 73% passed. These are acceptable
values, but we hope to increase these numbers even more by
improving the quality of support. The hardware in its current
form is well suited to convey the course contents. To increase
the fun aspect of our course, we plan to introduce a line-
following robot into the third part. It will be used to teach
motor control and power-efficient programming issues.

Although we are currently not conducting the course in a
distance learning setting, we could easily do so. Due to the
lab kits, homework can be done at home. All course material
is contained on the Knoppix CD that is part of the lab kit,
so students have all information they need at home. The
supervised lab hour can easily be offered via Webcam. The
theory exams are already conducted via Internet, and since
the exam supervisor does not have to help students, any exam
room and supervisor would suffice as long as it is guaranteed
that students cannot get illegal help during the exam. The
programming exams currently need skilled supervisors to help
with debugging problems, but this might also be achievable
with a Webcam, so as soon as our test system to automatically
evaluate the correctness of student solutions is available, the
programming exams can be conducted via Internet as well.

Although due to some hardware problems we do not yet
have experience with the electronic lectures, some students
already told us that they think it is a great idea. We will try
to make each lecture as self-sustaining as possible, complete
with indications on which other lectures it relies, to allow other
courses to use our lectures as necessary. In turn, we believe it

46

would be useful to generate a faculty-wide database of such
lectures, possibly even with exam or self-assessment questions
about the material, so that instructors can easily assemble
material students should brush up on for their course.

VI. CONCLUSION

The course in its current form is successful, student satisfac-
tion is high. Our course structure has proved effective, students
like the take-home lab kits, the flexible grading scheme, and
the homework exercises. The course can easily be exported to
other universities or can even be held in a distance learning
setting.

To keep the course scalable and efficient, we employ a hier-
archical structure for supervision, with 1 tutor per 15 students
and 1 TA for all tutors. Lectures are provided electronically,
so after the setup phase of the course, the professor only has
to handle the course organization and assign the final grades.

Final scores are composed of programming exam results,
theory results, light compulsory homework, and voluntary
bonus homework. A certain minimum score on the program-
ming exams is necessary to attain a positive grade to prevent
unprepared students to pass by plagiarizing their homework.

There are still some open tasks which can make the
course more self-supporting. First of all, we intend to
expand our set of electronic lectures to include video
introductions to the hardware, and generally introductions
to all subjects students have problems with (e.g., C
programming). Second, we will continue to develop our
automatic test system, which is currently only available
as a prototype, and work on the web cam approach
so we can eventually conduct all exams remotely and
without trained supervisors on site. We are also currently
looking for suitable plagiarism detectors to strengthen the
value of our homework exercises, which can in theory be

exploited by lazy students to get a better grade. Finally, we
need a suitable course management tool that also supports
tutors in their work.

REFERENCES

[1] W. Wolf and J. Madsen, “Embedded systems education for the future,”
Proceedings of the IEEE, vol. 88, no. 1, pp. 23–30, Jan. 2000.

[2] B. Haberman and M. Trakhtenbrot, “An undergraduate program in
embedded systems engineering,” in 18th Conference on Software En-
gineering Education and Training), Apr.18–20, 2005, pp. 103–110.

[3] MCLab, “Microcontroller homepage,” 2005, www.ecs.tu-
wien.ac.at/lehre/Microcontroller/MCLab.shtml. [Online]. Available:
http://www.ecs.tuwien.ac.at/lehre/Microcontroller/MCLab.shtml

[4] C. E. Nunnally, “Teaching microcontrollers,” in 26th Annual Frontiers
in Education Conference (FIE’96), vol. 1, Nov. 6–9, 1996, pp. 434–436.

[5] M. Amirijoo, A. Tešanović, and S. Nadjm-Tehrani, “Raising motiva-
tion in real-time laboratories: The soccer scenario,” in 35th SIGCSE
Technical Symposium on Computer Science Education, Mar. 2004, pp.
265–269.

[6] J. W. McCormick, “We’ve been working on the railroad: A laboratory
for real-time embedded systems,” in 36th SIGCSE Technical Symposium
on Computer Science Education, Feb. 23–27, 2005, pp. 530–534.

[7] R. Bachnak, “Teaching microcontrollers with hands-on hardware exper-
iments,” Journal of Computing Sciences in Colleges, vol. 20, no. 4, Apr.
2005.

[8] A. N. Kumar, “The effect of closed labs in Computer Science I: An
assessment,” Journal of Computing Sciences in Colleges, vol. 18, no. 5,
pp. 40–48, May 2003.

[9] L.-K. Soh, A. Samal, S. Person, G. Nugent, and J. Lang, “Closed
laboratories with embedded instructional research design for CS1,” in
36th SIGCSE Technical Symposium on Computer Science Education,
Feb. 23–27, 2005, pp. 297–301.

[10] B. Weiss and G. Gridling, “Creating and grading multiple choice
tests,” Vienna University of Technology, Institut für Technische
Informatik, Research Report 63/2004, Dec. 2004. [Online]. Available:
http://www.vmars.tuwien.ac.at/frame-papers.html

[11] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared
information and program plagiarism detection,” IEEE Transactions on
Information Theory, vol. 50, no. 7, pp. 1545–1551, July 2004.

[12] K. W. Bowyer and L. O. Hall, “Experience using “MOSS” to detect
cheating on programming assignments,” in 29th Annual Frontiers in
Education Conference (FIE’99), vol. 3, Nov. 10–13, 1999, pp. 13B3/18
– 13B3/22.

[13] C. Daly and J. Horgan, “Patterns of plagiarism,” in 36th SIGCSE
Technical Symposium on Computer Science Education, Feb. 23–27,
2005, pp. 383–387.

47

